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The problem of approximating e" has long been a popular one. Assessing
the order of approximation by polynomials was already considered by
Bernstein, and of late many authors have treated the corresponding question
for rational junctions.

Just recently Saff and Reddy asked, respectively, abollt polynomial and
rational function approximation to C'>: when the zeros and poles are restricted
to the negative axis. These are the questions we treat in this paper. We
determine the exact order for the case of polynomials while we only obtain
rather crude bounds for the rational case. These bounds, however, do
establish the qualitative facts that (A) rational approximation is far better
than polynomial approximation, and (B) the restriction on the zeros and
poles does make the approximation far l\'Orsc.

For convenience we work with the interval [0, I] although any other fInite
interval could have been used. Our precise statements are

THEOREM I. (I), eX ~ (I +- (x/n))n j .:;; 21n on [0, IJ.
(1I) If deg p(x) :::.:; nand p(x) has aU real zeros then at one of the three

points 0, }, or 1 we must have i eX - p(x) > II 17n.

THEORHI 2. (I). There is a rational jilllction, R(x), of total degree n
haring negative integers jor zeros and poles and such that, throughout [0, I],
r C"- R(x)' •.:; n-clogn (c a fixed positire constant).

(II) There is no rational junction, rex), of total degree n haL'ing negative
:::eros and poles and such that, throughout [0, f), i e" - r(x)j 512-11 •

As we predicted above Theorem 2(1) compared to Theorem 1(J1) shows
(A), the superiority of rational over polynomial approximation, while
Theorem 2(11) compared to the fact that L~~o (x''jk!) lies within I/n! of e'
shows (8), that the negativivity condition does indeed worsen the
approximation.
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Proof of Theurcl11 1( I). This is a standard exercise. We have

so that
(Ii (x/n»"log ---------

c"

.\"~ x:;

2n~ -- 311~

.,
.Y'"

3n~ 2/1

by the alternating series theorem. Hence, indeed

,( I '(xjn))" I)

Proof of Theorem 1(11).

LEMMA. Suppose deg p(x) n, pCx) has all real zeros, and p(x) 0 0/1
[a, b), then (p(x))l" is CO/1cave 0/1 [a, b].

Proof We write p(x) = c TIn (x :x) and differentiate twice, obtaining

But (I: (lj(x +- ,.:))2 n:L (Ij(x +~)~) by Schwarz' inequality so that
indeed (pI!")" O.

We may assume that /1 1, and we suppose that at 0, 1, I, ! e" -- p(x):
so thatp(O) I -- E, pm :<:;: e1/~ E <: e1/2/(1 - E), p(1) c - E > e(1 - d.
Hence (p(O»I" 2(p(t))lil (p(I))1/" e1 / 21i(I --- E)1!1i [c1 /")I C Ji2"

2/(1- Er i1l
] and the left-hand side is non positive, by our lemma. Hence

1/(1-- E)2." cosh(1/2/1) >- I (1/8/12), and so 1/(1 -- E) (I (1/8/12))""

> 1 +- (I/16n) which gives E 1/(16/1:' I) ',1/I7n as required.
For both halves of Theorem 2 we use the formula.

iii . 1 '
" (-IY (111) _-_ c=c -,-----'-'-~.------F
,'!--o k k s sis +- 1) '" (s -+ 111)

which is proved, e.g., by partial, fractions (or via the B-function).

Proof of Theorem 2(1).

III

I .. I (
/.- •• 1

In F write N/t for s, tin [0, 1] and obtain

III' ['''N Ill!
---------_._- ------_ .. -

(N +- t)(N : 2t) ... (N -; lilt) lV"
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so that integration from 0 to x in [0, I] yields
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We now choose N,~ I.c.m. {I, 2. 3, .... m; and conclude that the rational
function

".
R(x) n (J

'kl .

k ' (_1)<-1(/1') N-r) 7. /.
;Y'

approximates e"' to within Am!/No'. From prime number theory it is known,
for m _" I, that e~m < N < efJ."" c.:, f3 fixed positive constants, Hence, since
deg R(x) < 2mN this degree can be kept :::.':;; n while choosing m > 'v log n.
This done allows the error estimate: Am!/N'" < e- 6m

2 < e-c(log /1)2 as required.

Proof of Theorem 2(1I). Here we use formula F in quite a different way.
Set in s ~c m -+ ml, integrate to obtain

dt
I)) ... (I ;- (mt/(nl -+;;;»f '

and note that, for u > 0, this right side is bounded by

1 .C(' cit 2

(,2111) Jo (I -+ (t/2»'" rl = m (2m) .
J}1 , III

Also, using formula F with s = m gives 'L,~' (- ly' C/;)(m/(k·: 111)) co, ]/(~:;') •

Now suppose that we did have a rational function rex), rex) ~-' c' rr;~l

(1 .:. xuJ", Ei = :fl, Ui ;:::> 0, such that I e"'- r(x)i < E. Thus we would have
(:-- 'L,;'-<l Ei log() -+ xu;) -[- x « E and, in particuJar, c-- L;~l E; log(1
(m/(m -+ k» uJ -+ (m/(m -+ k» < E for k ~,-= 0, I, .. " m. Now apply .d m to
both sides. By our two previous estimates we obtain

Finally, choosing m = 3n yields

or

Q.E.D.


